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Basic Concepts
Frequent pattern mining searches for recurring relationships in a given data set. It

introduces the basic concepts of frequent pattern mining for the discovery of interesting
associations and correlations between itemsets in transactional and relational databases.

Market Basket Analysis: A Motivating Example

Which items are frequently
purchased together by my customers?

Shopping Baskets

jn [ ju
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Figure 5.1 Market basket analysis.

A typical example of frequent itemset mining is market basket analysis. This process
analyzes customer buying habits by finding associations between the different items that customers
place in their —shopping basketsl (Figure 5.1). The discovery of such associations can help retailers
develop marketing strategies by gaining insight into which items are frequently purchased together
by customers. For instance, if customers are buying milk, how likely are they to also buy bread
(and what kind of bread) on the same trip to the supermarket? Such information can lead to
increased sales by helping retailers do selective marketing and plan their shelf space.

If we think of the universe as the set of items available at the store, then each item has a
Boolean variable representing the presence or absence of that item. Each basket can then be
represented by a Boolean vector of values assigned to these variables. The Boolean vectors can be
analyzed for buying patterns that reflect items that are frequently associated or purchased together.
These patterns can be represented in the form of association rules. For example, the information that
customers who purchase computers also tend to buy antivirus software at the same time is
represented in Association Rule (5.1) below:

Computer =>antivirus software [support = 2%; confidence = 60%] (5.1)

Rule support and confidence are two measures of rule interestingness. They respectively
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reflect the usefulness and certainty of discovered rules. A support of 2% for Association Rule (5.1)
means that 2% of all the transactions und er analysis show that computer and antivirus software are
purchased together. A confidence of 60% means that 60% of the customers who purchased a computer
also bought the software. Typically, association rules are considered interesting if they satisfy bot h
a minimum support threshold and a minimum confidence threshold. Such thresholds can be set by
users or domain experts. Additional analysis can be performed to uncover interesting statistical
correlations between associated items.

Frequent Itemsets, Closed Itemsets, and Association Rules

o A setofitems is referred to as an itemset.
o An itemset that contains k items is a k-itemset.
o The set {computer, antivirus software} is a 2-itemset.

« The occurrence frequency of an itemset is the number of transactions that contain
the itemset. This is also known, simply, as the frequency, support count, or
count of the itemset.

supportiA=8) = PlALUB)
confidence(A=B) = P{BA).
SO ] siphori_counHA LB
confidence(A=B) = P(B|A) = support(A LU E) _ support_coun (A B___

support{A) support_count(A)

« Rules that satisfy both a minimum support threshold (min sup) and a minimum
confidence threshold (min conf) are called Strong Association Rules.

In general, association rule mining can be viewed as a two-step process:

1. Find all frequent itemsets: By definition, each of these itemsets will occur at least as
frequently as a predetermined minimum support count, min_sup.

2. Generate strong association rules from the frequent itemsets: By definition, these
rules must satisfy minimum support and minimum confidence.

The Apriori Algorithm: Finding Frequent Itemsets Using Candidate Generation

Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for mining
frequent itemsets for Boolean association rules. The name of the algorithm is based on the fact that
the algorithm uses prior knowledge of frequent itemset properties, as we shall see following. Apriori
employs an iterative approach known as a level-wise search, where k - itemsets are used to explore
(k +1)-itemsets. First, the set of frequent 1-itemsets is found by scanning the database to accumulate
the count for each item, and collecting those items that satisfy minimum support. The resulting set
is denoted L1.Next, L1 isused to find L2, the set of frequent 2-itemsets, which is used to find L3,
and so on, until no more frequent k -itemsets can be found. The finding of each Lk requires one full
scan of the database.
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To improve the efficiency of the level-wise generation of frequent itemsets, an important property
called the Apriori property, presented below, is used to reduce the search space. We will first describe this
property, and then show an example illustrating its use.

Apriori property: All nonempty subsets of a frequent itemset must also be frequent.

A two-step process is followed, consisting of join and prune actions

I. The join step: To find Lg, a set of candidate k-itemsets is generated by joining Lg_
with itself. This set of candidates is denoted Ci.. Let !} and > be itemsets in Lg_.
The notation [ f] refers to the jth item in J; (e.g., I [k — 2] refers to the second to the
last item in {j ). By convention, Apriori assumes that items within a transaction or
itemset are sorted in lexicographic order. For the (k — 1)-itemset, I;, this means that
the items are sorted such that Ij[1] < L[2] < ... < [k —1]. The join, Lg_q w0 Lg_q,
is performed, where members of Lg_ are joinable if their first (£ — 2) items are in
common. That is, members [y and Iz of Ly are joined if (4[] = {z[1]) A (L[2] =
2] Ao a [k —2] =1z2[k —2]) Al [k — 1] < iz[k — 1]). The condition [i[k — 1] <
Iz [k — 1] simply ensures that no duplicates are generated. The resulting itemset formed
by joining /y and I5 is {4 [1], 4 [2],..., { [k = 2], ) [k — 1], B[k — 1].

2. The prune step: Cg is a superset of Lg, that is, its members mav or may not be frequent,
butall of the frequent k-itemsets are included in C.. A scan of the database to determine
the count of each candidate in C¢ would result in the determination of Lg (i.e., all
candidates having a count no less than the minimum support count are frequent by
definition, and therefore belong to Lg ). G, however, can be huge, and so this could

involve heavy computation. To reduce the size of Ci, the Apriori property is used
as follows. Any (k — 1)-itemset that is not frequent cannot be a subset of a frequent
k-itemset. Hence, it any (k — 1 )-subset of a candidate k-itemset is not in Ly, then
the candidate cannot be frequent either and so can be removed from Ci. This subset
testing can be done quickly by maintaining a hash tree of all frequent itemsets.

Table 5.1 Transactional data for an AlElectron-
ics branch.

TID List of iterm_Ds
T100 I, 12,15

T200 12,14

T200 2,13

T4o0 I1,12,14

T500 I1, 13

Teoo 12,13

700 I1, 13

TEDO I1, 12, 13,15
Ta00 I, 12,13
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Example 5.3 Apriori. Let’slook at a concrete example, based on the AllElectronics transaction database,
D, of Table 5.1. There are nine transactions in this database, that is, |D| = 9. We use
Figure 5.2 to illustrate the Apriori algorithm for finding frequent itemsets in D.

I. In the first iteration of the algorithm, each item is a member of the set of candidate
1-itemsets, C). The algorithm simply scans all of the transactions in order to count
the number of occurrences of each item.

2. Suppose that the minimum support count required is 2, that is, min_sup = 2. (Here,
we are referring to absolute support because we are using a support count. The corre-
sponding relative support is 2/9 = 22%). The set of frequent 1-itemsets, Ly, can then
be determined. It consists of the candidate 1-itemsets satisfving minimum support.
In our example, all of the candidates in C) satisfy minimum support.

3. To discover the set of frequent 2-itemsets, L,, the algorithm uses the join L; x L; to
generate a candidate set of 2-itemsets, C2.8 C3 consists of (4 l) 2-itemsets. Note that
no candidates are removed from C, during the prune step because each subset of the
candidates is also frequent.

4. Next, the transactions in I are scanned and the support count of each candidate item-
set in Cz is accumulated, as shown in the middle table of the second row in Figure 5.2.

B. The set of frequent 2-itemsets, L3, is then determined, consisting of those candidate
2-itemsets in C2 having minimum support.

6. The generation of the set of candidate 3-itemsets, Ca, is detailed in Figure 5.3. From the
join step, we first get C3 = Lo va Lo = J11,12,13}, {11, 12,15}, {11, 13,15}, {12, 13,14},
112,13,15}, {12, 14, 15} }. Based on the Apriori property that all subsets of a frequent
itemset must also be frequent, we can determine that the four latter candidates cannot
possibly be frequent. We therefore remove them from Cs, thereby saving the effort of
unnecessarily obtaining their counts during the subsequent scan of D to determine Ls.
Mote that when given a candidate k-itemset, we only need to check ifits (kK — 1)-subsets
are frequent since the Apriorialgorithm uses a level-wise search strategy. The resulting
pruned version of C3 is shown in the first table of the bottom row of Figure 5.2,

7. The transactions in D) are scanned in order to determine Lz, consisting of those can-
didate 3-itemsets in C3 having minimum support (Figure 5.2).

8. The algorithm uses L3 1 L3 to generate a candidate set of 4-itemsets, Cy. Although
the join results in { {11, 12, 13, 15} }, this itemset is pruned because its subset { {12, 13,
I5}1} is not frequent. Thus, Cy = &, and the algorithm terminates, having found all of
the frequent itemsets. ]

Generating Association Rules from Frequent Itemsets

Once the frequent itemsets from transactions in a database D have been found, it is straightforward
to generate strong association rules from them (where strong association rules satisfy both minimum
support and minimum confidence). This can be done using Equation (5.4) for confidence, which we
show again here for completeness:

support_count{A L B)
support_count{A )

confidence(A = B) = P(B|A) =
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Algorithm: Apriori. Find frequent itemsets using an iterative level-wise approach based on candidate
generation.

Input:

I, a database of transactions;

min_sup, the minimum support count threshold.
Otput: L, frequent itermsets in D
Method:

(L Ly = find frequent_1 -iternsets{ D)
(2 for (k =2:Lg_y # dok++)

(2] Cy = apriorisgeniLg_1 ;i

(4) for each transaction ¢ < D { & scan D for counts

(5] C; = subset{Cy, £); // get the subsets of ¢ that are candidates
(6l for each candidate ¢ = G

(7 coount 44

(8}

(9] Ly = {c £ Cy|cocount = minsup}

o}

(11} refurn L = Ul

procedure apriori_geniL,_:frequent (& — 1)-itemsets)
(1 for each itemsset Iy © Ly

(2) for each itemset I, = Ly,

(3 W00 (1] = B[ AR [2] = B2 A (e —2] = Eafk —2]) A (R [k — 1] < L[k —1]) then |
(4 c =0 ™ [}/ join step: generate candidates

(5] if has_infrequent_subsetic, L, ;) then

(5] delete o ¢/ prune step: remove unfruitful candidate

(7l else add ¢ to O

(8} 1

(9] return O

procedure has_infrequent_subset(c: candidate k-itemset;
Ly—1: frequent (& — 1 -itemsets); /f use prior knowledge

(1) for each (k — 1)-subsat s of ¢
(2 ifs €Ly then
(3] return TRUE;

(4) return FALSE:

The conditional probability is expressed in terms of itemset support count, where
support_count{A U B) is the number of transactions containing the itemsets A U B, and
support _count(A) is the number of transactions containing the itemset A. Based on this
equation, association rules can be generated as follows:

For each frequent itemset {, generate all nonempty subsets of [,

" if sippart oot il) -

For every nonempty subset s of [, output the rule “s = (I — 5’ Tupport cownils] =

min_conf, where min_conf is the minimum confidence threshold.

Because the rules are generated from frequent itemsets, each one automatically sat-
isfles minimum support. Frequent itemsets can be stored ahead of time in hash tables
along with their counts so that they can be accessed quickly.
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Example 5.4 Generating association rules. Let’s try an example based on the transactional data
for AllElectronics shown in Table 5.1. Suppose the data contain the frequent itemset
= {11, 12, I5}. What are the association rules that can be generated from 12 The
nonempty subsets of [ are {I1, 12}, {11, 15}, {12, I5}, {I1}, {12}, and {I5}. The
resulting association rules are as shown below, each llsted with its confidence:

nAI2=15, contfidence = 2 /4 = 50%
INAIS = 12, contfidenice = 2/2 = 100%
215 =11, confiderce = 2/2 = 100%
Il = 1I2A15, confidetice = 2/6 = 33%
12 = T1 ATS, confiderice = 2/7 = 29%
I5 = ll N2, confidetice = 2 /2 = 100%

If the minimum confidence threshold is, sav, 70%, then onlv the second, third, and
last rules above are output, because these are the only ones generated that are strong.
Note that, unlike conventional classification rules, association rules can contain more
than one conjunct in the right-hand side of the rule. ]

FP-Growth Method: Mining Frequent Itemsets without Candidate Generation

As we have seen, in many cases the Apriori candidate generate-and-test method significantly
reduces the size of candidate sets, leading to good performance gain.

An interesting method in this attempt is called frequent-pattern growth, or simply FP-growth,
which adopts a divide- and-conquer strategy as follows. First, it compresses the database representing
frequent items into a frequent-pattern tree, or FP-tree, which retains the itemset association
information. It then divides the compressed database into a set of conditional databases (a special kind
of projected database), each associated with one frequent item or —pattern fragment,| and mines each
such database separately. You’ll see how it works with the following example.

Example 5.5:FP-growth (finding frequent itemsets without candidate generation). We re-examine the
mining of transaction database, D, of Table 5.1 in Example 5.3 using the frequent pattern growth
approach.

The first scan of the database is the same as Apriori, which derives the set of fre-
quent items ( 1-itemsets) and their support counts ( frequencies). Let the minimum sup-
port count be 2. The set of frequent items is sorted in the order of descending support
count. This resulting set or list is denoted L. Thus, we have L ={{12: 7}, {I1: 6}, {I13: 6},
IT4: 21, 115: 211

An FP-tree is then constructed as follows. First, create the root of the tree, labeled with
“null.” Scan database I a second time. The items in each transaction are processed in
L order (i.e., sorted according to descending support count), and a branch is created for
each transaction. For example, the scan of the first transaction, “T100: 11, 12, 15,” which
contains three items (12, 11, I5 in L order), leads to the construction of the first branch of
the tree with three nodes, {12: 1}, {I11:1}, and {I5: 1}, where 12 is linked as a child of the
root, I1 is linked to 12, and 15 is linked to 1. The second transaction, T200, contains the
items 2 and [4 in L order, which would result in a branch where 12 is linked to the root
and I4 is linked to 12. However, this branch would share a common prefix, 12, with the
existing path for T100. Theretore, we instead increment the count of the 12 node by 1, and
createa new node, (14: 1), which is linked as a child of {I12: 2}. In general, when considering
the branch to be added for a transaction, the count of each node along a common prefix
is incremented by 1, and nodes for the items following the prefix are created and linked
accordingly.
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Figure 5.7 An FP-tree registers compressed, frequent pattern information.

Mining the FP-tree by creating conditional {sub- Jpattern bases.

[tem Conditional Pattern Base Conditional FPiree Frequent Patterns Generated
15 {{12,11: 1}, §12,11,13:1} ) {12:2,11:2) [12,15:2}, 411, 15: 2}, {12, 11, 15: 2}
4 {{12,11: 1}, f12: 11} (12:2) 112, 14: 2}
I3 {{I2,T1:2}, {12: 2}, {T: 2} 12:4, 10020, (T1:2) {12, 13: 4}, {11, [3: 4}, {12,110, 13: 2}
I {{12:4}} (12: 4} [12,11: 4}

Mining of the FP-tree is summarized in Table 5.2 and detailed as follows. We first
consider 15, which is the last item in L, rather than the first. The reason for starting at the
end of the list will become apparent as we explain the FP-tree mining process. I5 occurs
in two branches of the FP-tree of Figure 5.7. ( The occurrences of I5 can easily be found
by following its chain of node-links.) The paths formed by these branches are {12, 11,
[5: 1) and {I2, I1, I3, I5: 1}. Therefore, considering 15 as a suffix, its corresponding two
prefix paths are {I2, I1: 1) and {12, 11, 13: 1}, which form jts c{}-m‘litimm] pattern base. Its
conditional FP-tree contains only a single path, {I2: 2, 11: 2}; I3 is not included because
its support count of 1 is less than the minimum support cou nt. The single path generates
all the combinations of frequent patterns: {12, 15: 2}, {11, I5: 2}, {12, 11, I5: 2}.

For 14, its two prefix paths form the R.{}J]L'lltll_‘u‘.ld] pdttun base, {{I'? [1: 1}, {I12:1}1,
which generates a single-node conditional FP-tree, {I12: 2}, and derives one frequent

pattern, {12, I1: 2}. Notice that although I5 follows 14 in the first branch, there is no
need to include 15 in the analysis here because any frequent pattern involving 15 is ana-
Iyzed in the examination of 15.

Similar to the abowve analvsis, I13s conditional pattern base is {{12, I1: 2}, {12: 2},
111: 2} 1. Its conditional FP-tree has two branches, {I12: 4, 11: 2} and (I1: 2}, as shown in
Figure 5.8, which generates the set of patterns, {{12, I3: 4}, {11, 13: 4}, {12, 11,13: 2} }.
Finally, 11's conditional pattern base is {{I2: 4} }, whose FP-tree contains only one
node, (I2: 4}, which generates one frequent pattern, {12, I1: 4}. This mining process
is summarized in Figure 5.9. ]
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Algorithm: FP_growth. Mine frequent itemsets using an FP-tree by pattern fragment growth.
Input:
D, a transaction database;
mir_sup, the minimum support count threshold.
Cratput: The comyplete set of frequent patterns.
Method:
1. The FP-tree is constructed in the following steps:

(a) Scan the transaction database D once. Collect F, the setof frequent iterns, and their support counts.
Sort F in support connt descending order as L, the se of frequent items.

(b} Create the root of an FP-tree, and label it as “null.” For each transaction Trans in I do the following,
Select and sort the frequent itemns in Thans according to the order of L. Let the sorted frequent item
list in Thans be [p| P, where p isthe first element and P is the remaining list. Call Insert_tres([p|P]. T).
which is performed as follows. If T has a child & such that N.item-name = pitem-name, then increment
N's count by 1; else create a new node &, and let its count be 1, its parent link be linked to T, and its
node-link to the nodes with the same ftem-name via the node-link structure. If P is nonempty, call
Insertrreal P, V) recursively.

2. The FP-tree is mined by calling FP_growth( FP_tree, null), which is implemented as follows.

procedure FP_growth( Tree, o)
(1) if Tree contains a single path P then

(2] for each combination {denoted as B of the nodes in the path P

(33 generate pattern Bl o with support_count = minimum support count of nodes in b
4} else for each a; in the header of Tree {

(5 generate pattern = a; Ut with support_count = aiuppert _count;

(&) construct (s conditional pattern base and then p’s conditional FP_tree Treeg

(7 if Tre'a'ﬁ #= 0 then

(8} call FP_growthi Treeg, Bli }

Figure 5.9 The FP-growth algorithmfor discovering frequent itemsets without candidategeneration.
Also Read Example problems which we solved in Class Lecture

Mining Various Kinds of Association Rules:

1) Mining Multilevel Association Rules

For many applications, it is difficult to find strong associations among data items at low or
primitive levels of abstraction due to the sparsity of data at those levels. Strong associations discovered
at high levels of abstraction may represent commonsense knowledge. Moreover, what may represent
common sense to one user may seem novel to another. Therefore, data mining systems should
provide capabilities for mining association rules at multiple levels of abstraction, with sufficient
flexibility for easy traversal among different abstraction spaces.

Let’s examine the following example.

Mining multilevel association rules. Suppose we are given the task-relevant set of
transactional data in Table for sales in an AllElectronics store, showing the items purchased for each
transaction. The concept hierarchy for the items is shown in Figure 5.10. A concept hierarchy defines
a sequence of mappings from a set of low-level concepts to higher level, more general concepts. Data

can be generalized by replacing low-level concepts
within the data by their higher-level concepts, or ancestors, from a concepthierarchy.
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TID Iterms Purchased

T100  IBM-ThinkPad-T40/2373, HP-Photosmart-7660

T200 Microsoft-Office-Professional-2003, Microsoft-Plus!-Digital-Media
T300 Logitech-MX700-Cordless-Mouse, Fellowes-Wrist- Rest

T400  Dell-Dimension-XPS, Canon-PowerShot-5400

T500  IBM-ThinkPad-R40/P4M, Symantec-Norton-Antivirus-2003

Prunter & Crisérh ] fnl TipuiEr "n.n.n.r:ﬂrn

/\ /\

Lapiess Dezkrop Office -xul.l‘l il Printer [J.ﬂlg Cari |.'r| '-'trl.sl. pad Binizse

\/\/\/\X\/\/\/

R - Dell . \'!Il.n. :-l.ll Canan ]l.Im s

2 M A n AL n 1 n 71 n T

Figure 5.10 A concept hierarchy for AllElectronics computeritems.

Association rules generated from mining data at multiple levels of abstraction are called
multiple-level or multilevel association rules. Multilevel association rules can be mined efficiently
using concept hierarchies under a support-confidence framework. In general, a top-down strategy
is employed, where counts are accumulated for the calculation of frequent itemsets at each
concept level, starting at the concept level 1 and working downward in the hierarchy toward
the more specific concept levels, until no more frequent itemsets can be found. For each level,
any algorithm for discovering frequent itemsets may be used, such as Apriori or its variations.

o Using uniform minimum support for all levels (referred to as uniform support):
The same minimum support threshold is used when mining at each level of
abstraction. For example, in Figure 5.11, a minimum support threshold of 5% is used
throughout (e.g., for mining from “computer” down to “laptop computer”). Both
“computer” and “laptop computer” are found to be frequent, while “desktop
computer” IS not.

When a uniform minimum support threshold is used, the search procedure is
simplified. The method is also simple in that users are required to specify only one
minimum support threshold. An Apriori-like optimization technique can be adopted,
based on the knowledge that an ancestor is a superset of its descendants: The search
avoids examining itemsets containing any item whose ancestors do not have
minimum support.
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Level |
mih_sup = 5% [ computer [support = 109%] ]

Level 2

min_sup =5%

[ laptop computer [support = 6%] ] [ desktop computer [support = 4% ]

Multilevel mining with uniform support.

o Using reduced minimum support at lower levels (referred to as reduced support):
Each level of abstraction has its own minimum support threshold. The deeper the level of
abstraction, the smaller the corresponding threshold is. For example, in Figure, the
minimum support thresholds for levels 1 and 2 are 5% and 3%, respectively. In this way,
“computer,” “laptop computer,” and “desktop computer” are all considered frequent.

o Using item or group-based minimum support (referred to as group-based support):
Because users or experts often have insight as to which groups are more important than
others, it is sometimes more desirable to set up user-specific, item, or group based minimal
support thresholds when mining multilevel rules. For example, a user could set up the
minimum support thresholds based on pro duct price, or on items of interest, such as by
setting particularly low support thresholds for laptop computers and flash drives in order to
pay particular attention to the association patterns containing items in these categories.

2) Mining Multidimensional Association Rules from Relational Databases and DataWarehouses

We have studied association rules that imply a single predicate, that is, the predicate buys. For
instance, in mining our AllElectronics database, we may discover the Boolean association rule

bu ys(X, “aigital camera ,1—' E'M":lx HP ”F”w“.]'

Following the terminology used in multidimensional databases, we refer to each distinct predicate
in a rule as a dimension. Hence, we can refer to Rule above as a single dimensional or intra
dimensional association rule because it contains a single distinct predicate (e.g., buys)with multiple
occurrences (i.e., the predicate occurs more than once within the rule). As we have seen in the
previous sections of this chapter, such rules are commonly mined from transactional data.

Considering each database attribute or warehouse dimension as a predicate, we can therefore
mine association rules containing multiple predicates, such as

age(X, “20..29") foccupation( X, “student” ) = buys(X, “laptop”™).

Association rules that involve two or more dimensions or predicates can be referred to as
multidimensional association rules. Rule above contains three predicates (age, occupation, and
buys), each of which occurs only once in the rule. Hence, we say that it has no repeated predicates.
Multidimensional association rules with no repeated predicates are c alled inter dimensional
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association rules. We can also mine multidimensional association rules with repeated predicates,
which contain multiple occurrences of some predicates. These rules are called hybrid-dimensional
association rules. An example of such a rule is the following, where the predicate buys is repeated:

age(X, “20..297) & buys(X, “laptop™ )= buys(X, “HFP printer”)

Note that database attributes can be categorical or quantitative. Categorical attributes have a
finite number of possible values, with no ordering among the values (e.g., occupation, brand,
color). Categorical attributes are also called nominal attributes, because their values are —names
of things.l Quantitative attributes are numeric and have an implicit ordering among values (e.g., age,
income, price). Techniques for mining multidimensional association rules can be categorized into two
basic approaches regarding the treatment of quantitative attributes.

Mining Multidimensional Association Rules Using Static Discretization of Quantitative Attributes

Quantitative attributes, in this case, are discretized before mining using predefined concept
hierarchies or data discretization techniques, where numeric values are replaced by interval labels.
Categorical attributes may also be generalized to higher conceptual levels if desired. If the resulting
task-relevant data are stored in a relational table, then any of the frequent itemset mining algorithms we
have discussed can be modified easily so as to find all frequent predicate sets rather than freq uent itemsets.
In particular, instead of searching on only one attribute like buys, we need to search through all of the
relevant attributes, treating each attribute-value pair as an itemset.

-1 (apex ) cubaoid

1-17 cubaoids

2-1 cubaoids

{age, income) (income, biys)

3D (bhase) cuboid

(age, income, buys)

Lattice of cuboids, making up a 3-D data cube. Each cuboid represents a different group-by.
The base cuboid contains the three predicates age, income, and buys.

Mining Quantitative Association Rules

Quantitative association rules are multidimensional association rules in which the numeric attributes
are dynamically discretized during the mining process so as to satisfy some mining criteria, such as
maximizing the confidence or compactness of the rules mined. In this section, we focus specifically on
how to mine quantitative association rules having two quantitative attributes on the left-hand side of the

Department of CSE Page 12



http://www.csetube.in/

rule and one categorical attribute on the right-hand side of the rule. That is,
Aq’mnl -"_"-ﬂ""!l-q'm.lfl = Acar

where Aquanl and Aquan2 are tests on quantitative attribute intervals (where the intervals are
dynamically determined), and Acat tests a categorical attribute from the task-relevant data. Such rules
have been referred to as two-dimensional quantitative association rules, because they contain two
quantitative dimensions. For instance, suppose you are curious about the association relationship between
pairs of quantitative attributes, like customer age and income, and the type of television (such as high-
definition TV, i.e., HDTV) that customers like to buy. An example of such a 2-D quantitative association
ruleis

agel X, “30..397) Adncome(X, “42K . ASK )= buys( X, "HDTV™)

Binning: Quantitative attributes can have a very wide range of values defining their domain. Just think
about how big a 2-D grid would be if we plotted age and income as axes, where each possible value
of age was assigned a unique position on one axis, and similarly, each possible value of income was
assigned a unique position on the other axis! To keep grids down to a manageable size, we instead partition
the ranges of quantitative attributes into intervals. These intervals are dynamic in that they may later
be further combined during the mining process. The partitioning process is referred to as binning, that is,
wh ere the intervals are considered —bins.I Three common binning strategies area as follow s:

Equal-width binning, where the interval size of each bin is the same

Equal-frequency binning, where each bin has approximately the same number of
tuples assigned to it,

Clustering-based binning, where clustering is performed on the quantitative attri-
bute to group neighboring points (judged based on various distance measures) into
the same bin

Finding frequent predicate sets: Once the 2-D array containing the count distribution for each category
is set up, it can be scanned to find the frequent predicate sets (those satisfying minimum support) that
also satisfy minimum confidence. Strong association rules can then be generated from these predicate
sets, using a rule generation algorithm.

Clustering the association rules: The strong association rules obtained in the previous
step are then mapped toa 2-D grid. Figure 5.14 shows a 2-D grid for 2-D) quantitative
Eak)

association rules predicting the condition buys(X, "HDTV") on the rle right-hand
side, given the quantitative attributes age and income. The four Xs correspond to the

rules
age(X, 34) mvincome( X, “31K .. 40K )= buys( X, "HDTV") (5.16)
age(X, 35) Mincome (X, “31K . 40K )= buys(X, "HDTV") (5.17)
age(X, 34) mvincome( X, “41K .. 50K )= buys( X, "HDTV") (5.18)
age(X, 35) Aincome(X, “41K ... 50K )= buys(X , “HDTV"). (5.19)

“Can we find a sitmpler rule to replace the above four rules?” Notice that these rules are
quite “close” to one another, forming a rule cluster on the grid. Indeed, the four rules
can be combined or “clustered” together to form the following simpler rule, which
subsumes and replaces the above four rules:

Department of CSE Page 13



http://www.csetube.in/
http://www.csetube.in/

TIK..80K

61K..TOK

SIK..60K

41K..50K

[Rcome

JIK. 40K

21K..30K

<=20K

A 2-D grid for tuples representing customers who purchase high-definition TVs.

From Association Mining to CorrelationAnalysis

Most association rule mining algorithms employ a support-confidence framework. Often, many
interesting rules can be found using low support thresholds. Although minimum support and confidence
thresholds help weed out or exclude the exploration of a good number of uninteresting rules, many rules
so generated are still not interesting to the users. Unfortunately, this is especially true when mining at
low support thresholds or mining for long patterns. This has been one of the major bottlenecks for
successful application of association rulemining.

1) Strong Rules Are Not Necessarily Interesting: An Example

Whether or not a rule is interesting can be assessed either subjectively or objectively.
Ultimately, only the user can judge if a given rule is interesting, and this judgment, being subjective, may
differ from one user to another. However, objective interestingness measures, based on the statistics
—behindl the data, can be used as one step toward the goal of weeding out uninteresting rules from
presentation to the user.

The support and confidence measures are insufficient at filtering out uninteresting association
rules. To tackle this weakness, a correlation measure can be used to augment the support-confidence
framework for association rules. This leads to correlation rules of the form

A = B [suppore, confidence. correlation).

That is, a correlation rule is measured not only by its support and confidence but also by the
correlation between itemsets A and B. There are many different correlation measures from which to
choose. In this section, we study various correlation measures to determine which would be good for
mining large data sets.

Constraint-Based Association Mining:

A data mining process may uncover thousands of rules from a given set of data, most of which
end up being unrelated or uninteresting to the users. Often, users have a good sense of which —directionl
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of mining may lead to interesting patterns and the —forml of the patterns or rules they would like to find.
Thus, a good heuristic is to have the users specify such intuition or expectations as constraints to confine
the search space. This strategy is known as constraint-based mining. The constraints can include the
following:

Knowledge type constraints: These specify the type of knowledge to be mined, such
as association or correlation.

Data constraints: These specify the set of task-relevant data.

Dimension/level constraints: These specify the desired dimensions (or attributes) of
the data, or levels of the concept hierarchies, to be used in mining,

Interestingness constraints: These specify thresholds on statistical measures of rule
interestingness, such as support, confidence, and correlation.

Rule constraints: These specify the form of rules to be mined. Such constraints may
be expressed as metarules (rule templates), as the maximum or minimum number
of predicates that can occur in the rule antecedent or consequent, or as relationships
among attributes, attribute values, and/or aggregates.

1) Metarule-Guided Mining of Association Rules

“How are metarules useful?” Metarules allow users to specify the syntactic form of rules that they
are interested in mining. The rule forms can be used as constraints to help improve the efficiency of the
mining process. Metarules may be based on the analyst’s experience, expectations, or intuition regarding
the data or may be automatically generated based on the database schema.

Metarule-guided mining:- Suppose that as a market analyst for AllElectronics, you have access to
the data describing customers (such as customer age, address, and credit rating) as well as the list of
customer transactions. You are interested in finding associations between customer traits and the items
that customers buy. However, rather than finding all of the association rules reflecting these
relationships, you are particularly interested only in determining which pairs of customer traits promote the
sale of office software.A metarule can be used to specify this information describing the form of rules
you are interested in finding. An example of such a metarule is

PUX, Y AP X, W= buys(X, “office software”),

where P1 and P2 are predicate variables that are instantiated to attributes from the given database
during the mining process, X is a variable representing a customer, and Y and W take on values of the
attributes assigned to P1 and P2, respectively. Typically, a user will specify a list of attributes to be
considered for instantiation with P1 and P2. Otherwise, a default set may be used.

2) Constraint Pushing: Mining Guided by Rule Constraints

Rule constraints specify expected set/subset relationships of the variables in the mined rules,
constant initiation of variables, and aggregate functions. Users typically employ their knowledge of the
application or data to specify rule constraints for the mining task. These rule constraints may be used
together with, or as an alternative to, metarule -guided mining. In this section, we examine rule
constraints as to how they can be used to make the min ing process more efficient. Let’s study an
example where rule constraints are used to mine hybrid-dimensional association rules.
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Our association mining query is to “Find the sales of which cheap items (where the sum of the
prices is less than $100) may promote the sales of which expensive items (where the minimum price is
$500) of the same group for Chicago customers in 2004.” This can be expressed in the DMQL data
mining query language as follows,

1) mine associations as

(2) lives_in(C, , “Chicago™) A sales™ (C, I}, {8V) = sales™ (C, 1J}, 4T}
(3) from sales

(4) where S.vear = 2004 and T.year = 2004 and L.group = J.group

(5) group by C, Lgroup

(6) having sum(Lprice) < 100 and min(J.price) = 500

(7) with support threshold = 1%

(8) with confidence threshold = 50%
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